Part I

*How to Use CrashStats*
## Table of Contents

1. PRODUCT INFORMATION ................................................................. 4  
   1.1 Copyright .................................................................................. 4  
   1.2 Trademarks .................................................................................. 4  
   1.3 Disclaimer .................................................................................... 4  
   1.4 Ownership and Maintenance ....................................................... 4  
2. INTRODUCTION .................................................................................... 5  
   2.1 Explanatory Notes ......................................................................... 5  
   2.2 Source .......................................................................................... 5  
   2.3 About this Guide ............................................................................ 5  
3. TECHICAL REQUIREMENTS ............................................................... 6  
   3.1 Required Hardware ........................................................................ 6  
   3.2 Software Requirements ................................................................. 6  
   3.3 Firewall Security ............................................................................ 6  
4. ACCESSING CRASHSTATS ................................................................. 7  
   4.1 CrashStats Access ......................................................................... 7  
5. A GUIDED TOUR OF CRASHSTATS .................................................. 8  
   5.1 Getting Started ............................................................................. 8  
   5.2 Getting Around CrashStats ............................................................ 8  
   5.3 How To Run a New Query ............................................................... 8  
   5.4 Selecting a Specific Site ................................................................. 10  
   5.5 Selecting a Type of Query ............................................................... 11  
6. USING THE MAP FEATURES ............................................................ 18  
   6.1 Basic Procedures: Zooming ............................................................ 19  
   6.2 Forming Queries with The Mapping Tool (Site Selection) ............ 20  
   6.3 Site and Road Length Selection ..................................................... 21  
   6.4 Viewing Query Results in a Map ..................................................... 24
1. PRODUCT INFORMATION

CRASHSTATS
Road Crash Statistics Victoria, 2013 Edition
© VicRoads 1995-2013
VicRoads, Melbourne, Jun 2013
ISSN 1324-2563

1.1 Copyright
Copyright laws and international treaty provisions protect CrashStats. You acknowledge that all title and copyright in and to CrashStats (including, but not limited to images, photographs, animations, video, audio, text incorporated into CrashStats) are owned by VicRoads. You will not permit any act which infringes the copyright in CrashStats.

You may use, copy, reproduce, translate, vary, modify or make available to other persons information contained in CrashStats (except confidential information) provided that: you only do so for a purpose that is reasonably related to the purpose for which CrashStats has been provided to you; and unless it is impracticable to do so, you acknowledge that the source of the information is CrashStats which is owned by VicRoads.

1.2 Trademarks
Windows, Microsoft Windows and Microsoft are trademarks of Microsoft Corporation. VicRoads is Victoria's road traffic authority.

1.3 Disclaimer
Care has been taken to ensure the accuracy of the maps and data but these are provided on the terms and understanding VicRoads is not responsible for any actions and results of any actions taken on the basis of the information supplied, nor for any error in or omission of data.

1.4 Ownership and Maintenance
The ownership of application belongs solely to VicRoads. Data and application maintenance work performed by VicRoads in conjunction with HCL Technologies
2. INTRODUCTION

CrashStats provides access to a database containing Victorian Road Crash Statistics from 1987 onwards for crashes where at least 1 person was injured.

CrashStats may be accessed by using a web browser that can run a Java applet, with a connection to the Internet. The recommended browser is Internet Explorer version 6.0 or later, Mozilla Firefox version 19 or later. All queries to the CrashStats database are performed remotely and the results are sent to your computer.

Users can specify criteria by which to search for accidents ranging from locations to the type of vehicles involved and the characteristics of the people involved. The results of the queries can be displayed in a map or in table form and are generated in PDF format for saving or printing.

2.1 Explanatory Notes

The CrashStats database contains statistics of road traffic accidents which were reported to the police and which met the following conditions:

- That the accident occurred from the calendar year 1987 onwards.
- That the accident resulted in:
- The death of any person within thirty days of the accident.
- Personal injury as identified by the police officers completing the accident report.
- That the accident occurred on any road, street, thoroughfare, footpath, railway level crossing, or any place open to the public.
- That the accident involved one or more road vehicles which, at the time of the accident were in motion, including motor cars, station wagons, utilities, panel vans, motor cycles, trucks, buses, trams and railway vehicles, pedal cyclists and ridden animals.

2.2 Source

The statistics in the CrashStats database are compiled from data from the VicRoads Accident Database.

2.3 About this Guide

The conventions followed in this Guide are as follows:

**Bold Italics** Bold Italics font is usually a reference to a Button, Menu or Tab. Look on your screen for a Button, Menu or Tab with the same name.

![Light Globe Symbol]

The light globe symbol is used to indicate a very important note.
3. TECHNICAL REQUIREMENTS

3.1 Required Hardware
CrashStats requires a computer that is capable of running Internet Explorer 6.0 or higher, Mozilla Firefox version 19 or higher. Adobe Acrobat 6.0 or higher and must have a connection to the internet.

3.2 Software Requirements
- You must be running in a screen resolution of 800x600 pixels or higher.
- In-Browser Applet:
  - A Java 1.7 or JRE 7 compliant web browser. (Recommended browser is Microsoft Internet Explorer version 6.0 or higher, Mozilla Firefox version 19 or higher).
- Download of Reports:
  - Adobe Acrobat Reader 6.0 or newer is required for the viewing and printing of all reports, and for the printing of maps and summaries. Acrobat Reader may be downloaded from the Adobe web site at: http://www.adobe.com/products/acrobat/readstep.html.

3.3 Firewall Security
CrashStats communicates with a remote server listening port number 443 (standard https). If you are behind a firewall then you must configure the firewall to allow connections to these port numbers.
4. ACCESSING CRASHSTATS

Go to the VicRoads web site home page at:

Under Safety & Rules tab, click on About Road Safety and follow the link to Statistics and Research. Click the CrashStats link given in Statistics and Research screen.

4.1 CrashStats Access

1. The “Terms of Access for CrashStats” information will appear. To proceed, click ‘I accept the terms for use of PUBLIC CrashStats’ to use the public version, or click ‘I accept the terms for use of Restricted CrashStats’ to use the restricted version.

   NOTE: Restricted CrashStats contain cropped Police Images of crashes in addition the same data available from Public CrashStats. Restricted CrashStats can only be accessed by approved registered users, whose access was granted by the Road Safety Department of VicRoads (ex.: Municipal Council workers, etc).

2. If the public version of CrashStats was chosen, the application will load.

3. A login dialog will appear if the restricted version of CrashStats was chosen. If you have been supplied with a user id and password, enter these here to proceed.

   NOTE: You may be prompted to accept a certificate before the login dialog appears. Click yes to accept the certificate when prompted.

You can now begin using CrashStats.
5. A GUIDED TOUR OF CRASHSTATS

5.1 Getting Started
Once CrashStats starts you will be presented with an initial menu. Select one of these options, which are described in the next section.

5.2 Getting Around CrashStats

5.2.1 Icon Buttons
CrashStats is driven by icon buttons. Click ONCE on an icon button to select it.

Note: Wait for a response from the computer. Some commands take longer to run than others (e.g. saving files, etc.).

5.2.2 Main Menu
Click on this button to return to the Main Menu and clear all query selections.

5.2.3 Back
Click on this button to move back to the previous screen.

5.2.4 Help
Click on this button to view context sensitive help.

The Main Menu, Back, and Help buttons are always grouped together at the bottom of a CrashStats screen

5.2.5 Status Bar
The status bar (at the bottom of a CrashStats window) displays a message outlining the available options that may be selected.

5.3 How to Run a New Query

5.3.1 Limiting the search
The first screen of CrashStats will present you with a location option. The scope of the search must be limited to particular geographic areas. Select single or multiple Municipalities, Rural Towns or Regions/Total Victoria, as the area to be searched. See the Location window below.

Municipalities, Rural Towns, or Regions/Total Victoria may be selected by clicking with the mouse.
Once a geographic area is selected, a corresponding list will appear on the screen to select from. Multiple selections are possible by clicking on each item one at a time. Items can be deselected by clicking on them again.
Once the desired selections have been made, click the **OK** button to continue with the query.

### 5.4 Selecting a Specific Site

#### 5.4.1 Site Selection

Three options are available from the Site Selection menu. Select either:

- **All Sites**
  - All sites in the given area are included in the query.

- **Select Sites**
  - This screen is used to select multiple road lengths and intersections, **MIDBLOCKS**, and major routes (called **DECLARED ROADS** i.e. freeways, highways, tourist roads etc). Entry of this query information is done via a map of the selected location. The map is initially displayed from a high viewpoint. That is, to obtain a more meaningful representation of the map, it may be zoomed in upon. The map can be moved about on the screen if it is too large to fit in the area (panning the map). This is done by clicking and dragging the mouse on the map area. Roads can be identified at the click of the mouse, and can easily be added to form part of a query.

For specific details on how to use the **Site Selection Map** feature of CrashStats, go to Section 6, titled ‘**Using the Mapping Features**’.

- **Groupings of Crash Sites**
  - This screen allows selection either by “State Declared/Classified Roads” or "Council/ Local" Roads".

**State Government Declared Roads**

State Government Roads are those "Declared" as either a “Freeway” or “Arterial” as per the Road Management Act 2004. They include freeways, highways, specified forest and tourist roads and main roads. They are given an official description which may not be the commonly used name and a reference code. Eg.: Stud Road is officially called the Dandenong Valley Highway, the Hume highway has 2550 as its route number (these are clearly written on the VicRoads State Directory maps). In this category the city link toll road has been included though its not a state Declared road but it functions as a freeway.

**Council ‘Local’ Roads**

Council 'Local' roads ALSO INCLUDE major road that are not “Arterial” and collector roads as well as suburban residential and similar small roads.
5.5 Selecting a Type of Query

5.5.1 Query Type

5.5.1.1 Ready made queries

This option will display a list of common queries. Select the date range you want. Click on the query that you wish to perform and then choose one of the available options for displaying the results of the query. (See “Results” section below for a description of the different outputs available).

This screen also includes an option to select target group only. If this check box is selected, the report will display results only for the road users and vehicle types specified in the query. Any other vehicles or road users involved will not be reflected in the query output.

5.5.1.2 Build your own query

This option allows you to create your own query. The Build Query screen displays 21 variables spread over six tabs.

1. Severity
2. Road Condition
3. Traffic Control
4. Light Condition
5. Object Hit
6. Atmospheric Condition  
7. Speed Limit  
8. Vehicle Type  
9. Road User Type  
10. Age  
11. Sex  
12. Distance From Home (km) **Not Available**  
13. Injury Level  
14. Position in Vehicle  
15. Restraint Use  
16. Date  
17. Time  
18. Day of Week  
19. Definitions for Classifying Accidents - in groups  
20. Definitions for Classifying Accidents - individually  
21. Urbanisation

Click on a tab to select groups of similar categories. You do not have to set criteria for all categories. You may also select or deselect multiple restrictions and/or categories from some lists by clicking on them with the mouse. If no selections are made, the query will be taken from accident data within the default date range for the specified sites.

This screen also includes an option to select target group only. If this check box is selected, the report will display results only for the road users and vehicle types specified in the query. Any other vehicles or road users involved will not be reflected in the query output.

**Screen Capture 4: Build Your Own Query Screen**

Go to the section **Viewing the Query Results** for detailed information on how to view the results of a query.
5.5.1.3 Multiple Queries
To perform multiple queries of the data you must return to the main menu before entering each new query.

5.6 Viewing the Query Result

5.6.1 Results
When querying with either a Ready–Made Query or a Build Your Own Query, several options are available once the query has been finalised:

5.6.2 Saving Results to File
Clicking on the Save To File button allows the user to save the results of the query locally, in comma delimited text files that can be opened with almost any word processing, spreadsheet, or database application.

5.6.3 Printing Query Results
Clicking on the Listings button and selecting the Individual Accident Details radio button will produce detailed information on individual accidents. A query report will be downloaded in PDF format, which will be displayed in a new browser window. The report can be printed or saved using the browser.

NOTE: Restricted Crashstats users will have the option to include Police Images. Select the checkbox to include these images.

Clicking on the Rank button and on selecting the Summary by Site radio button will download a query report in PDF format showing the results, grouped or summarized by site. The report can be printed or saved using the browser.

5.6.4 Sorting of Results
The results of both of these reports may be sorted by Location (Map Reference, Road Name etc), Site Ranking (number of accidents at each site) or Route No & Distance (Distance along route(s)).

5.6.5 Statistics
5.6.5.1 Analysis
There are three analysis types provided by CrashStats:

5.6.5.2 Summary by Accident Attribute
This displays accident-based summaries of a query. Each query attribute can be accessed by clicking on the appropriate corresponding button at the top of the screen.
Target Group: If a specific vehicle type and/or road user type has been selected as a query parameter, the target group result will display values only for the specified vehicle type and/or road user.

Ex: Query for ‘Melbourne’, Vehicle Type ‘Car’ will only display results for car accidents in Melbourne. Any other vehicle types involved in car accidents will not be displayed.
5.6.5.3 Summary by Person Attribute
This displays the results of the query for each of the road user types based on age and sex. Each road user summary can be accessed by clicking on the appropriate button at the top of the Summary screen.

Target Group: If a specific vehicle type and/or road user type has been selected as a query parameter, the target group result will display values only for the specified vehicle type and/or road user.

Ex: Query for ‘Melbourne’, Road User Type ‘Pedestrian’, Aged ‘15-50’: will only display results for pedestrians aged 15-50 involved in accidents in Melbourne. Any other road user types involved in these accidents will not be displayed.
Comparison to Another Area

This allows statistical comparisons of selected attributes between two different locations, using the same search criteria. For example, you can compare Bendigo performance versus Ballarat; you can compare your local municipality with the average performance of the Melbourne Metropolitan area.

When the comparison tool is clicked the user is presented with the standard location selection screens. Select a location to compare the data with.

Once a comparison location is selected a list of all available comparison attributes is displayed. Tick /Un-tick those attributes that are to be included in the comparison and click the OK button.
Once the required comparison attributes have been selected the results will be displayed:

5.6.6 Printing Summaries

The user can print out the details displayed in a summary screen by clicking
on the *Print/Save PDF* button. The report will be downloaded in PDF format and loaded in a new browser window, which can be printed or saved.

### 5.6.7 Saving Query Summaries

The user can save the details displayed in a summary screen by clicking on the *Export Chart* button. This will display the following dialog -:

![Screen Capture 11: Export Chart Dialog](image)

Enter *Save* and the Chart will be downloaded in *Portable Network Graphics (PNG)* Image format from the server and displayed in a new browser window. Select save or print from your browser window.

Click *Cancel* to abort saving the summary.

### 5.6.8 Map

This displays the results of the query in a graphical format. The number of individual accidents on a certain area of road is displayed using yellow circles, while aggregate accident locations will be displayed using squares. This is similar to the symbols used in the site selection screen. If there has been more than 5 accidents in a given location, the number will be displayed using a larger symbol.

**NOTE:** See Section 6, *Using the Map Features*, for information on changing the appearance of items in the map or adding text etc.

### 6. USING THE MAP FEATURES

The map interface can be displayed from two locations in CrashStats, which determines the context a map will be shown. It can be displayed to Select Sites for a specific query and to display the results of a query. Depending on the context a map is displayed, the allowed features on the map tool will vary. For information on map features for a particular context, go to one of the sections below:

*Forming Queries with the Mapping Tool (Site Selection)*
6.1 Basic Procedures: Zooming

6.1.1 Zoom In

Clicking on the Zoom In button increases the size of the central part of the map on the screen (that is, the map becomes bigger). To zoom in on a particular area, make sure that the displayed area is roughly in the middle of the Map Window before clicking the Zoom In button. This should be done each time prior to zooming in.

6.1.2 Zoom Out

Clicking on the Zoom Out button results in more of the map being shown in the Map Window (that is, the map appears smaller). If you have panned the map area since last zooming in, the map will not go back to the same state when the Zoom In was last performed.

6.1.3 Zoom Scale

The zoom scale determines how far in and out the Zoom In and Zoom Out buttons will zoom.

6.1.4 Full Map Display

Clicking on the Full Map Display button will zoom and pan the map back to its original viewing area.

6.1.5 Zoom into Area

This tool can be used to zoom in on a specific area of a map. Select this tool, then click & drag a rectangle around that part of the map to be zoomed into. Note that the rectangle maintains the same aspect ratio as the current viewing area to show exactly what will be visible when the operation is complete.

6.1.6 Panning

Panning refers to the action of moving a map around in the Map Window. When viewing a map for Site Selection or Accident Summaries, the Pan button must be selected before the map can be dragged about on the Map Window with the mouse. The Pan button is selected by clicking on it.

Hint: To move an area into the centre of the Map Window, click on the area of interest and drag the mouse to the centre of the Map Window.
6.2 Forming Queries with The Mapping Tool (Site Selection)

To form queries using the Mapping Tool, the Site Selection map must be accessed from the Site Selection menu. This is done by clicking on the Select Sites button. The following screen will be presented:

![Screen Capture 12: Select Sites Map]

This Map Window displays the map with data that is only relevant to the locations that were selected via the Locations Menu. Use the legend provided to the left of the Map Window to determine the meaning of the information provided on the map.

Use the Basic Features of the Mapping tool to navigate around the map.

6.2.1 Label Road Button

This adds a road name on the map to help you work out where things are on the map. Select this tool and then click the mouse on the road you want named and the name is then displayed. Note that if you want “Classified Roads” and “local” arterial road names (“Non-Classified” Roads) you must first tick the appropriate checkbox on the left hand side of the screen to display these roads, and it is best to zoom in first.

6.2.2 Information Button

This tool provides extra information on accident sites (aggregate or individual sites). Again this helps to orient where you are on the map. The information contains road names, map references etc.
6.2.3 Displaying Major Roads

The **Classified Roads** checkbox displays all state government classified roads on a specific area of the map that are not yet visible. If only one Local Government Area (Municipality) is selected, this button will be disabled. This is because all major roads are displayed by default when only one Local Government Area is selected.

**Note:** To display classified roads, the user must be zoomed in to an area of less than 30km from the top of the map to the bottom. This limitation is in place to ensure quick response times.

6.2.4 Displaying Local Roads

The **Non-Classified Roads** checkbox displays all roads in a Local Government Area (Municipality) that are not state government classified. These are mainly local residential roads, but also include collectors and minor arterials (mainly occurs in Melbourne and Geelong). If more than one Local Government Area is selected, this option is disabled, as there is too much data to retrieve from the CrashStats database within a reasonable time period.

6.3 Site and Road Length Selection

6.3.1 Individual Sites and Road Lengths

To select individual accident sites or a length of road to apply to a query, firstly select the **Select Sites & Road Lengths** button.

**Note:** More than one selection can be made for a query.

6.3.2 Selecting Road Lengths

To select a length of road to query, ensure the **Select Sites & Road Lengths** tool is selected and then click on the road to use in the query. The following dialog will appear:
The Road Selection Dialog contains a list of the accident sites along the selected road. Note that most sites will be along the road and not at intersections. Intersection names are in CAPITALS. There are several options available for selecting the length of the road that the query will be applied to:

- **From Start To End**: adds all sites along the entire stretch of road to the query.
- **From Start To a Specific Site**: adds all sites between the beginning of the road up to the selected site to the query.
- **From a Specific Intersection To End**: adds all sites from a selected site to the end of the road to the query.
- **From a Specific Site To a Specific Site**: adds all sites from a selected site up to the selected site to the query.
- **Inclusive**: selecting the ‘Inclusive’ check box at the bottom of the From and To lists specifies that the selected site will also be added to the query. Otherwise, the specified site will not be included in the query.

Each SITE has an associated distance along the road in kilometers. After the desired sites have been selected, click the **OK** button. The WHOLE section of the selected road being applied to the query will be highlighted.

### 6.3.3 Selecting Sites

A collection of accident sites are displayed on the Site Selection map. Aggregate accident sites are displayed as [Intersections](#) and [Midblocks](#), using square symbols. Individual accident sites are displayed as [Intersections](#) and [Midblocks](#), using circle symbols.

The difference between aggregate and individual sites can be shown by the following example. 4 accidents have occurred on Abbott Street between the 2 adjoining intersections of Smith Street and Jones Road. These accidents are located respectively at 20m North of Jones, 30m, 40m and 50m. Choosing aggregate sites shows only 1 symbol and on the map
output window this has a “4” drawn inside it. Displaying / ticking the individual sites shows 4 symbols. On the map output window each has a 1 drawn inside it.

To select any accident site for a query, simply click the mouse on the site of interest. When a site has been selected, it’s appearance changes. An **INTERSECTION**, when selected, appears as •, and a selected **MIDBLOCK** appears as •.

![Screen Capture 14: Multiple Selections of Accident Sites and Road Lengths](image)

**Hint:** To remove an individual site or road length selection from the map, simply click on the item again.

**NOTE:** Very occasionally mid-block sites close together can appear as one crash until zoomed in to an area of about 0.5 x 0.5 km

### 6.3.4 Area Site Selection Tools

- Click and drag a rectangle around an area of sites to select. Hold down **Ctrl** key to deselect sites within the rectangle.
- Click and drag a circle around an area of sites to select. Hold down **Ctrl** key to deselect sites within the circle. See diagram above.
Click and drag a freeform area surrounding a group of sites you wish to select. Hold down \texttt{Ctrl} key to deselect sites within the drawn area.

6.3.5 Exiting the Site Selection Map

Click the OK button after all selections have been made to go to the Query Menu. Before this occurs, a dialog will appear to confirm the selections.

Choose \texttt{Yes} to continue, or \texttt{No} if the selections are inadequate.

6.4 Viewing Query Results in a Map

After the \texttt{Map} Button has been pressed in the Query Result screen, a map will be displayed of the area in Victoria the query was performed on. The map may be navigated using the Basic Features (described earlier) to help identify specific data.
6.4.1 Individual Accident Sites

Individual accident sites are represented on the map by a bubble containing a figure. The number of accidents is the figure that is displayed within the bubble.

NOTE: that by selecting the option in the individual sites checkbox you can alter the circle sizes to suit your presentation needs.

6.4.2 Aggregate Accident Sites

Accident sites are represented on the map by a square containing a figure. The accident site square is blue if it is an intersection or pink if it is a mid-block site. The size of the square is proportional to the number of accidents. Again note by selecting the option in the aggregate sites checkbox, you can alter the circle sizes to suit your presentation needs.

6.4.3 Label Road
The *Label Road* mode allows the user to click on roads to label them. Click again on the dot of existing road name labels to remove them.

### 6.4.4 Information on Accident Site

To get detailed location and accident type details for an accident site on the map, the button must first be selected. The user can then click on the accident site of interest and a dialog will be displayed containing a summary of the accidents that have occurred at the site. The accident site is represented by a bubble containing a value (number of accidents for the site).

![Screen Capture 17: Site Details](image)

Once finished with the Site Details, click the *Close* button.

### 6.4.5 Annotating a Map

The Map of Query Results allows the user to provide his or her own comments, extra titles etc., to the data displayed on a map. To do this, first click on the *Annotate Map* button, and then click on the position of the map to display the annotation.

After clicking on the desired position of the map for the annotation, a small dialog will appear with space for entering your text. Type in some text and then press the *OK* button, or press *Cancel* to quit the operation.
NOTE: 3 font options are available here. If the OK button was clicked, the new annotation will appear on the map in the selected location.

Screen Capture 18: Query Results with Annotation (centre of map) and labeled Roads

6.4.6 Manipulating the Query Results Map

To the left of the results map is a list of checkboxes that can be used to show or hide map-related data. The user can choose to display Railways, Rivers, Lakes, Municipalities and the Victorian Border on the map, as well as the default Accident Sites and Classified Roads. This provides a useful way of managing the data and the sort of presentation that is displayed on a printed copy of a map, as well as providing the user with extra information about the area that they are viewing.
6.4.7 Printing a Map of Query Results

To print the current information displayed in the Map Window, simply click on the Print/Save PDF button. A PDF format of the map will be generated at the server and sent to the client in a new browser window. Select print from the browser window’s file menu to print the results.

6.4.8 Saving a Map of Query Results

CrashStats allows the saving of maps as Portable Network Graphics (PNG) images. Most popular paint packages and Microsoft products can load PNG images.

To save the current map, click on the Export Chart button. This will display the following dialog:
Click **Save** to open the map will appear in a new browser window and then right click on the image from inside the browser and select “Save Picture as..”. Click **Cancel** to abort saving the map.
Part II

Troubleshooting
& Appendices
TABLE OF CONTENTS

1. TROUBLESHOOTING........................................................................................................5
   1.1. Problems & Solutions.................................................................................................5
2. APPENDIX A – CRASHSTATS TERMS & DEFINITIONS......................................................7
   2.1. CrashStats Terms & Definitions...............................................................................7
     2.1.1. Roads and Road Names.....................................................................................7
     2.1.2. Source of Declared Road Names & Common Road Names..............................8
   2.2. Aggregated Accident Sites.....................................................................................9
     2.2.1. Intersection & Mid-block Locations.................................................................9
   2.3. Distances Along Roads............................................................................................10
3. APPENDIX B – MAP OF MUNICIPALITIES....................................................................11
   3.1. Maps of Municipalities...........................................................................................11
4. APPENDIX C – DEFINITIONS FOR CLASSIFYING ACCIDENTS (DCA) CHART..............14
   4.1. DCA Chart..............................................................................................................14
5. APPENDIX D – “SAVE DATA”........................................................................................17
   5.1. “Save Data” function extract format.......................................................................17
     5.1.1. Data (Table) Structure.....................................................................................17
     5.1.2. Joining Files/Tables.........................................................................................17
     5.1.3. Complex Locational Data Processing (Including - Accident Blackspot Sites).....18
6. APPENDIX E – SAMPLE POLICE COLLISION REPORT FORMS....................................44
   6.1. Sample Police Collision Report Forms....................................................................44
LIST OF SCREEN CAPTURES

Screen Capture 1: Example of Declared Roads and Non-Declared Road Names................. 8
Screen Capture 2: Graphic representation of intersection & mid-block points.................. 9
Screen Capture 3: Map of Municipalities in Victoria: Inner Melbourne.......................... 11
Screen Capture 4: Map of Municipalities in Victoria: Melbourne.................................... 12
Screen Capture 5: Map of Municipalities in Victoria: Western Part................................. 13
Screen Capture 6: Map of Municipalities in Victoria: Eastern Part.................................. 14
1. TROUBLESHOOTING

1.1. Problems & Solutions

This section outlines some of the possible problems associated with CrashStats. In most cases these problems have a very simple remedy. Note that the Hints throughout this user guide should also help.

Problem:

The results look incorrect. I have run several queries one after the other and the answers don’t seem right (e.g. number of accidents is too low).

Solution:

What is happening is that the settings from previous queries have not been cleared between queries. To ensure you are starting from scratch with a new, empty query, always return to the main menu between queries.

Problem:

I can’t get the CrashStats applet to load.

Solution:

You must be running a Java 1.5 or above capable web browser, such as one of those listed below:
Microsoft Internet Explorer 6 or higher
Netscape Communicator 4.7 or higher

Problem:

I can’t see the bottom of the map, or my legend appears to be incomplete or cut off. What do I do?

Solution:

CrashStats is designed to run in a screen resolution of 800x600 pixels or greater. If you are running in 640x480 you will be unable to fit the entire of the CrashStats display onto the screen. Under Microsoft Windows 95, 98, Me, NT4, 2000 and XP you can change your screen resolution as follows:
• Right click the desktop area.
• Select properties from the pop up menu.
• Click on the Settings tab.
• Move the slider bar in the Desktop Area to 800x600 pixels or higher. If your computer supports it, we also recommend that you change to a colour palette of 65536 colours or higher.
• Click the OK button.
• Right click the desktop area.
• Select properties from the pop up menu.
• Click on the Settings tab.
• Move the slider bar in the Desktop Area to 800x600 pixels or higher. If your computer supports it, we also recommend that you change to a colour palette of 65536 colours or higher.
• Click the OK button.
• A test pattern will be displayed for 10 seconds, after which will be asked if the screen resolution is OK – choose Yes if the test pattern was visible to accept the changes.
• Reload CrashStats if running the installed application version, or quit your web browser and reload the page if using the in-browser applet version.

Problem:

I can't save the PNG file from CrashStats and import it into a Microsoft product.

Solution:

CrashStats will display the PNG file in a new browser window. To save this image to disk right click the image and choose ‘Save Picture As…’. All Microsoft products can use PNG files. To use the image in PowerPoint for example, the user simply chooses to insert a picture and selects the PNG file. Image resizing tools are dependent on the exact Microsoft product used.

Problem:

I have selected a query and I do not seem to get any response from the server.

Solution:

WAIT! When performing queries on a large geographical area the server must perform lengthy database calculations and there will be an initial delay before any response is sent to the client. This will occur on any queries that involve the Melbourne Metropolitan Area or the whole of Victoria.

Problem:

I get an icon in a new browser window when performing Summary/Rank queries or saving maps instead of the Adobe Acrobat document.

Solution:

There are a number of problems with Adobe documents appearing in Internet Explorer (IE) browser windows. When you query CrashStats a new browser window should open with the Adobe plug in loaded and the document visible. Sometimes a small icon (a ‘placeholder’ icon) is all the user gets. One way to fix this is to change the security settings in IE.

To do this in IE select Tools; Internet Options; Security Tab; Select ‘Internet Zone’; Custom level; in the Settings area you must have ‘Run Active X Controls and Plugins’ set to enabled, otherwise the Adobe plug-in will not be able to load; next, in the lower window (the ‘Reset Custom settings’ window), the selection should be set to medium or lower.
Another cause of the problem is using the Internet Explorer network installation software (IEAK) to set up your browser. If this is the case and you can’t change the security settings, try Netscape or another browser.

2. APPENDIX A – CRASHSTATS TERMS & DEFINITIONS

2.1. CrashStats Terms & Definitions

The following information should be taken into account when using CrashStats.

2.1.1. Roads and Road Names

**CLASSIFIED OR DECLARED ROADS** are Freeways, Highways, Main Roads, Tourist Roads and Forest Roads which are the management responsibility of VicRoads under the Transport Act 1983 (871 roads at Aug'99). Each Declared Road has a unique four digit ROAD NUMBER and a CLASSIFIED or DECLARED ROAD NAME (eg 2140 Plenty Valley Hwy).

*Note:* Edition 6 of the VicRoads Country Street Directory of Victoria has changed the numbering conventions of highways and freeways. Highways are now in the 6000’s range and freeways in the 1000’s range. Most road numbers correspond to the earlier Editions’ 2000’s range eg 2750 (old) is now 6750; 2830 (old Eastern freeway) is now 1830 (for freeway sections).

**NON-CLASSIFIED OR NON-DECLARED ROADS** are all other roads in Victoria excluding the Declared Roads. These roads include local residential streets (brown or grey in the Melways), collector roads (purple in Melways Edition 33, orange in earlier Editions) and some minor arterial roads (mostly red and orange in Melways Edition 33 and red in earlier Editions). Each Non-Declared Road has a COMMON ROAD NAME by which the road is locally known and sign posted. Local Municipalities are responsible for Common Road Names.
2.1.2. Source of Declared Road Names & Common Road Names

1. VicRoads State Directory (VRSD) shows the declared road names (i.e. VicRoads administrative names) for all declared roads. Declared road names are charted on the VRSD along with their road numbers within the practical limitations of map scales. The declared road number is generally labeled alongside each start and the end of the road. In conjunction with line styles, colours and Township maps, it is possible to identify where the declared road starts and ends. Within the Melbourne metropolitan area the enlargement maps show the declared road names, numbers and start and end of the road. Most Common Road names are also shown along side the declared road names.

The production and release of CrashStats and the VicRoads State Directory are not synchronised and will therefore represent different snap shots of the declared road network. Depending on version of CrashStats being used, the user should attempt to reference the release of VRSD, which most closely matches the release date of CrashStats.

2. VicRoads Land Information & Survey Department have also produced a ROAD MANAGEMENT SERIES of maps (June 1998) which cover the State (scale 1:250,000, A1 size). Orders can be placed through the VicRoads Book Shop, phone (03) 9854 2782.

3. The Melway Street Directory predominantly shows Common road names by which the roads are locally known and sign posted. However, more recent editions are beginning to include some VicRoads declared road names on some Highways. For example, Dandenong Valley Hwy/Stud Rd.
As a general rule: The VicRoads State Directory should be used for determining the CLASSIFIED/DECLARED ROAD NAMES and DECLARED ROAD NUMBERS (Statewide) and for determining COMMON ROAD NAMES outside the metropolitan area. The Melway Directory should be used for determining the COMMON ROAD NAMES within the metropolitan area.

2.2. Aggregated Accident Sites

2.2.1. Intersection & Mid-block Locations

As well as providing exact individual locations for accident sites (within the nearest meter) CrashStats aggregates the location of all accident sites to either:

- Road INTERSECTIONS, where the accidents did occur at intersections; or
- Road Segment MIDBLOCKS, where the accidents did not occur at intersections.

Any accident that occurred within 10 meters of an intersection is defined as an intersection accident when reporting on all accidents at that intersection. Simple intersections are shown on the map typically as where 2 road lines cross – so within 10 meters of their crossing point accidents are added to the intersection.

Complex intersections are basically those where one or more simple intersections are very close to each other (usually within 10 meters, sometimes slightly larger as Springvale Junction). For CrashStats these are treated as one intersection.

Mid-block accidents (between 2 side by side intersections) are aggregated to one point and displayed at one point between the nearest intersections either side of the accident. See the diagram below.

Screen Capture 2: Graphic representation of intersection & mid-block points
**Note** that the aggregated Mid-block location of an accident site may be quite a long way away from where the accident actually occurred on the road (as shown in the individual sites accident location). Also if the road is shown as having 2 carriageways (such as a freeway) then EACH carriageway has an aggregated mid-block location site.

### 2.3. Distances Along Roads

CrashStats contains distances from the start of a road for each accident site on the road. For example, when creating a query from the **Site Selection Map**, the user may select a road length, which will bring up a dialog to select the length of that selected road to add to the query. In the dialog, a list of possible sites along the road is displayed for the user to select from, and next to these site names is a distance from road start value (in kilometers).

This distance from road start in CrashStats is derived by calculation on the computer map used in CrashStats. Note that for each new release of CrashStats, the distance values are recalculated based on the most current information in the database. The distance value of a specific accident from one release of CrashStats, may not be the same distance value in an earlier or later version (but they are usually fairly close).

**As a general rule**: Distance from road start should only be used as a general guide to accident site location. Do not use distance alone to locate accident sites. Distance should not be used as a sole search criterion in CrashStats. Sites should be located by reference to an intersection if possible.
3. APPENDIX B – MAP OF MUNICIPALITIES

3.1. Maps of Municipalities

The following pages show the 2006 local government area boundaries.  

Note: Docklands is not shown separately. It is within the Melbourne city municipality.
Screen Capture 4: Map of Municipalities in Victoria: Melbourne
Screen Capture 5: Map of Municipalities in Victoria: Western Part
Screen Capture 6: Map of Municipalities in Victoria: Eastern Part

4. APPENDIX C – DEFINITIONS FOR CLASSIFYING ACCIDENTS (DCA) CHART

4.1. DCA Chart
<table>
<thead>
<tr>
<th>Pedestrian on foot in Toys / Fram</th>
<th>Vehicles from adjacent directions (Intersections only)</th>
<th>Vehicles from opposing direction</th>
<th>Vehicles from same direction</th>
<th>Manoeuvring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near side</td>
<td>Cross traffic</td>
<td>1 - Wrong side</td>
<td>1 - Rear end</td>
<td>'U' turn</td>
</tr>
<tr>
<td>Emerging</td>
<td>Right far</td>
<td>1 - Other head on</td>
<td>1 - Rear end</td>
<td>'U' turn</td>
</tr>
<tr>
<td>Far side</td>
<td>Left far</td>
<td>1 - Right through</td>
<td>1 - Right rear</td>
<td>Leaving parking</td>
</tr>
<tr>
<td>Playing, working, lying, standing on carriageway</td>
<td>Right near</td>
<td>1 - Right/left</td>
<td>1 - Lane side swipe</td>
<td>Entering parking</td>
</tr>
<tr>
<td>Walking with traffic</td>
<td>Two turning right</td>
<td>1 - Right/right</td>
<td>1 - Lane change right</td>
<td>Parking vehicles only</td>
</tr>
<tr>
<td>Facing traffic</td>
<td>Right/left far</td>
<td>1 - Left/left</td>
<td>1 - Lane change left</td>
<td>Reversing</td>
</tr>
<tr>
<td>On median/footpath</td>
<td>Left near</td>
<td>1 - Left turn side swipe</td>
<td>1 - Right turn side swipe</td>
<td>Reversing from driveway - lane</td>
</tr>
<tr>
<td>Driveway</td>
<td>Left/right far</td>
<td>1 - Right turn side swipe</td>
<td></td>
<td>From footway</td>
</tr>
</tbody>
</table>

1. Definition for classifying accidents (DCA) should be determined by first selecting a column using the text above & then by diagrammatic sub-division.
2. The sub-division chosen should describe the general movement of vehicles involved in the initial event. It does not assign a cause to the accident.
3. Supplementary codes have been defined for most sub-divisions. These codes give further detail of the initial event.
### DEFINITIONS FOR CLASSIFYING ACCIDENTS

<table>
<thead>
<tr>
<th>OVERTAKING</th>
<th>ON PATH</th>
<th>OFF PATH ON STRAIGHT</th>
<th>OFF PATH ON CURVE</th>
<th>PASSENGER AND MISCELLANEOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>HEAD ON</strong> (not sideswipe)</td>
<td>PARKED 150</td>
<td>OFF CARRIAGeway TO LEFT 170</td>
<td>FALL FROM VEHICLE 190</td>
<td></td>
</tr>
<tr>
<td><strong>OUT OF CONTROL</strong> 151</td>
<td>DOUBLE PARKED 161</td>
<td>LEFT OFF CARRIAGeway INTO OBJECT/PARKED VEHICLE 171</td>
<td>LOAD OR MISSLE STRUCK VEHICLE 191</td>
<td></td>
</tr>
<tr>
<td><strong>PULLING OUT</strong> 152</td>
<td>ACCIDENT OR BROKEN DOWN 162</td>
<td>OFF CARRIAGeway TO RIGHT 172</td>
<td>STRUCK TRAIN 192</td>
<td></td>
</tr>
<tr>
<td><strong>CUTTING IN</strong> 153</td>
<td>VEHICLE DOOR 163</td>
<td>RIGHT OFF CARRIAGeway INTO OBJECT/PARKED VEHICLE 173</td>
<td>STUCK RAILWAY CROSSING FURNITURE 193</td>
<td></td>
</tr>
<tr>
<td><strong>PULLING OUT - REAR END</strong> 154</td>
<td>PERMANENT OBSTRUCTION ON CARRIAGeway 164</td>
<td>OUT OF CONTROL ON CARRIAGeway 174</td>
<td>PARKED CAR RUN AWAY 194</td>
<td></td>
</tr>
<tr>
<td><strong>TEMPORARY ROADWORKS</strong> 165</td>
<td>OFF END OF ROAD &quot;T&quot; INTERSECTION 175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>STRUCK OBJECT ON CARRIAGeway</strong> 166</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>ANIMAL (not ridden)</strong> 167</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OTHER OVERTAKING</th>
<th>OTHER ON PATH</th>
<th>OTHER STRAIGHT</th>
<th>OTHER CURVE</th>
<th>UNKNOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td>169</td>
<td>179</td>
<td>189</td>
<td>199</td>
</tr>
</tbody>
</table>

---

4. The number 1,2 identify individual vehicles involved when the DCA is linked with other vehicle/driver information.
5. These codes were used for 1987 accidents and replace the Road User Movement (RUM) code.
5. APPENDIX D – “SAVE DATA”

5.1. “Save Data” function extract format

The following pages list the fields in the database. They are listed in alphabetical order of Common Name. These are the fields that CrashStats data is stored in when ‘Save Data’ function button is chosen.

5.1.1. Data (Table) Structure

9 Files are created when the ‘Save Data’ function is used. These are:

<table>
<thead>
<tr>
<th>FILE/TABLE</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>accident</td>
<td>basic accident details, time, severity, location…</td>
</tr>
<tr>
<td>person</td>
<td>person based details, age, sex etc</td>
</tr>
<tr>
<td>vehicle</td>
<td>vehicle based data, vehicle type, make etc</td>
</tr>
<tr>
<td>accident_event</td>
<td>sequence of events e.g.: left road, rollover, caught fire</td>
</tr>
<tr>
<td>road_surface_cond</td>
<td>whether road was wet, dry, icy etc</td>
</tr>
<tr>
<td>atmospheric_cond</td>
<td>rain, winds etc</td>
</tr>
<tr>
<td>sub_dca</td>
<td>detailed codes describing accident</td>
</tr>
<tr>
<td>accident_node</td>
<td>master location table (NB subset of accident table)</td>
</tr>
<tr>
<td>accident_chainage</td>
<td>has detailed route and chainage data</td>
</tr>
</tbody>
</table>

**MOST USERS** should find that their data needs are met by just using the accident table only or, occasionally, by simple individual querying of the person, vehicle etc tables. Details of the most used fields in these files are contained in the Appendices.

5.1.2. Joining Files/Tables

For complicated data interrogations the tables must be joined. Only a brief discussion is provided here. If there are any difficulties please contact VicRoads directly. The “accident_no” field is the main joining key between the 7 non-locational tables (the first 7 tables listed above). The “person_id” and the “vehicle_id” fields are also joining keys between the vehicle and person tables (eg for finding which person was in which vehicle in the accident).

For locational data the accident_no field is the critical joining key and then the "node_id" field enables joining to the “accident_chainage” table.

**NOTE**: The accident table from the ‘Save Data’ output is really the raw accident table already joined to the “accident_node” table. That is the accident table already includes most of the basic locational information in it.
5.1.3. Complex Locational Data Processing (Including - Accident Blackspot Sites)

This is NOT readily available from the fields provided. An overview of the requirements is below.

Basically to derive an accident blackspot intersection count requires counting the number of accidents exactly located at the target intersection. A simple intersection is defined as where 'node_type = I' and 'complex_int_no = 0' PLUS those accidents within 10 metres of that intersection. IF the site is a complex intersection (e.g. Springvale Junction), then the count is done of all accidents with the same complex_int_no PLUS those accidents within 10 metres of any of the individual, simple intersections that make up the complex intersection.

For accident blackspot mid-block (non-intersection) sites you can only calculate accident blackspot counts at the total mid-block level (identified by a unique segment_id in the accident_chainage table). That is a mid-block or road segment is defined as the stretch of road between adjacent intersections. Also note that accidents within 10 meters of terminating intersections must be excluded.

Calculation of accident blackspot/blacklengths that are smaller or larger than the mid-block/road segment is not covered here.

5.1.4. List of major database fields and data dictionary

COMMON NAME: Accident number
TYPE: Character
DATABASE NAME: accident_no
SIZE: 12
SOURCE: ADDS - Police data entry system
COMMENTS: Until November 2005, 11 character field with the first character for police district, characters 2 to 5 are the year in which the form was registered by ADDS, characters 6 through 11 are a numeric sequencing number.
VALUES: Example: 12001012345, T20060006259

From November 2005 onwards 11 character field reads as follows:
1st character is T, character 2-5 – are the year in which record/form was generated, character 6-12 are a numeric sequences numbers.

Where the last 6 digits (012345) is the form number of the accident (starts at 1 for any given year)

NOTE: From November 2005 the accident number field was changed to be 12 character field, starting with T (for example, T20060123456)
Where characters 2 to 5 are the year in which accident was registered;
Where characters 6 to 12 are a numeric sequencing numbers
**COMMON NAME:** Accident type  
**TYPE:** Numeric  
**DATABASE NAME:** accident_type  
**SIZE:**  
**SOURCE:** 1989 - ADDS - 510 Accident report form  
**COMMENTS:** See also the more detailed DCA (Definitions for Classifying accidents) field  
**VALUES:**  
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Collision with vehicle</td>
</tr>
<tr>
<td>2</td>
<td>Struck pedestrian</td>
</tr>
<tr>
<td>3</td>
<td>Struck animal</td>
</tr>
<tr>
<td>4</td>
<td>Collision with a fixed object</td>
</tr>
<tr>
<td>5</td>
<td>Collision with some other object</td>
</tr>
<tr>
<td>6</td>
<td>Vehicle overturned (no collision)</td>
</tr>
<tr>
<td>7</td>
<td>Fall from or in moving vehicle</td>
</tr>
<tr>
<td>8</td>
<td>No collision and no object struck</td>
</tr>
<tr>
<td>9</td>
<td>Other accident</td>
</tr>
</tbody>
</table>

**COMMON NAME:** Age  
**TYPE:** Numeric  
**DATABASE NAME:** age  
**SIZE:** 4  
**SOURCE:** 1989- Calculated from date of birth  
**COMMENTS:** Age of person involved in the accident.  
Not possible to identify age 0 persons in 1987, 1988.  
**VALUES:** 000 - 998 Real age of person  
999  Age not known

**COMMON NAME:** AMG (Australian Map Grid coordinate System)  
**TYPE:** Numeric  
**DATABASE NAME:** AMG_X, AMG_Y  
**SIZE:**  
**SOURCE:** Calculated coordinates (“Pseudo AMG”)  
**COMMENTS:** With the emergence of digital mapping (mid 1980’s), the (then) Lands Department of Victoria defined a projection which would allow Victoria to be viewed as a single, continuous map coverage, rather than as multiple zones. This projection, known in VicRoads as Pseudo AMG, is based on AGD 66, but uses a UTM modified to have scale distortion of 1.0 at its centre, a centre based on 145 degrees longitude (Melbourne) and a single zone covering the whole state.  
Conversions of pseudo AMG coordinates to/from AMG involves direct mathematical calculation firstly into geographical (latitude, longitude) and then into grid (ie AMG or pseudo AMG) coordinates.  
Conversion of AMG or pseudo AMG coordinates to/from Old Grid coordinates is generally via geographical coordinates. However, because the ellipsoids for AGD 66 and Old Grid do not correspond, empirical-determined corrections are necessary to overcome this
misalignment.
Coordinate transformation software is available from the following website:

Description: Pseudo AMG

<table>
<thead>
<tr>
<th>Geodetic Datum</th>
<th>Projection Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo AMG</td>
<td>AGD66</td>
</tr>
<tr>
<td></td>
<td>Transverse Mercator</td>
</tr>
<tr>
<td></td>
<td>Origin: 0°</td>
</tr>
<tr>
<td></td>
<td>Central Meridian: 145°E</td>
</tr>
<tr>
<td></td>
<td>Central Scale Fact: 1.</td>
</tr>
<tr>
<td></td>
<td>Unit: Metre</td>
</tr>
<tr>
<td></td>
<td>False Easting: 500,000 m</td>
</tr>
<tr>
<td></td>
<td>False Northing: 10,000,000 m</td>
</tr>
</tbody>
</table>

COMMON NAME: Atmospheric conditions
TYPE: Numeric
DATABASE NAME: atmosph_cond
SIZE: 4
SOURCE: ADDS - 510 Accident report form

COMMENTS: Atmospheric conditions as recorded by the reporting officer. If required, two conditions are reported.

All codes entered must be compatible with other atmospheric conditions entered for the accident. E.g. If first condition is clear (code 1) then the other can not be raining (2), snowing (3) or 4, 5 and 6.

VALUES: Code Description
1 Clear
2 Raining
3 Snowing
4 Fog
5 Smoke
6 Dust
7 Strong winds
9 Not known

COMMON NAME: Complex intersection number/identifier
TYPE: Numeric, integer
DATABASE NAME: complex_int_no
Unique integer identifier for the complex intersection.

Complex intersections are basically simple intersections grouped together because they are extremely close to each other (typically within 20 metres). One of the largest sites is Springvale Junction (intersection of Springvale and Dandenong Road Melway Map 80A4). For a proper count of accidents VicRoads normally adds up all accidents at any part of the complex intersection (i.e. with the same complex_int_no) together PLUS accidents within 10 metres of any individual intersection that is part of the complex intersection. This is used for example in accident blackspot figures or site ranking counts.

NOTE – SEE SITE IDENTIFIER FIELD ALSO

Database record identifier

Used for matching records in CrashStats system. ID is the primary key for matched records.

VALUES: 000001-999999 Valid ID

Date of accident

Australian format DD/MM/YYYY (e.g.: 10 July 1995 = 10/07/1995).

Day of week

1989-on: 510 Accident report form or derived directly from the Accident Date.
VALUES: Code Description
1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday
7 Saturday

COMMON NAME: DCA (Definitions for Classifying Accidents)
TYPE: Char
DATABASE NAME: dca_code
SIZE: 3
SOURCE: 1989 on - VicRoads staff (see comments below)
COMMENTS: Where a choice of DCAs existed other accident variables were used to resolve this conflict.
DCA Code is consistent with other data such as Accident Type, Road Geometry, Road Character, Traffic Control and number of vehicles.
VALUES: Refer to Appendix C – DCA Chart

COMMON NAME: DCA arrow
TYPE: Char
DATABASE NAME: vehicle_dca_code
SIZE:
SOURCE: VicRoads Data Entry System - added by Vic Roads staff.
COMMENTS: This field links the vehicle with the movement depicted in the DCA chart. For example if the DCA for this accident is "111" and vehicle_dca_code has a value of "2" then inspection of the DCA chart will show that this vehicle is turning right.
REFER to Appendix C - DCA CHART.
See also initial_direction and final_direction fields
VALUES: Code Description
1 Vehicle 1
2 Vehicle 2
3 Not known which vehicle was numero
8 Not involved in initial event

COMMON NAME: DCA Group of the Accident
TYPE: Numeric
DATABASE NAME: dcacat (in cs_accident_info)

SIZE:

SOURCE: Swinburne

COMMENTS: DCA Group of the dca_rta.

This value is calculated from pre-existing table data and stored in cs_accident_info during the database import procedure.

VALUES: Value Category (DCAs)

1 Pedestrian (100-109)
2 Cross traffic (110)
3 Right turn near (113)
4 Head on - not overtaking (120)
5 Right turn against (121)
6 Rear end (130-132)
7 Head on - overtaking (150-159)
8 Off path on straight (170-179)
9 Off path on curve (180-184)
10 Other

COMMON NAME: Distance from start of road

TYPE: Integer

DATABASE NAME: chainage

SIZE:
SOURCE: Computed from VicRoads Road Network Database.

COMMENTS: The field contains distance in meters from the START for all roads.

Take care with freeways and some of the larger dual carriageway roads (ones that actually have 2 carriageways drawn on the computer map). There is a slightly different distance for each carriageway (even though the start of these roads is the same, every time there is a curve the carriageway on the inside of the curve gives a shorter distance then the one on the outside of the curve).

COMMON NAME: Horizontal Grid reference
See Map reference

COMMON NAME: Injury to person
TYPE: Numeric
DATABASE NAME: inj_level
SIZE:
SOURCE: Derived from Police data entry system.
COMMENTS: Injury level to person as recorded on the 510 accident report form and derived by Vic Roads.

As a result of the revised wording on the 1989 Police 510 form for 'injuries received', the proportion of accidents classified as casualty and property damage have changed for 1989 when compared with previous years. In order to maintain continuity of accident severity and injuries received over a number of years new variables for accident severity and injury have been defined.

Severity
1 Fatal accident
2 Serious injury accident (at least one in accident sent to hospital, possibly admitted)
3 Other injury accident
4 Non injury accident

Injury (inj_level)
1 Fatal injury (i.e. killed or died within 30 days)
2 Serious injury (sent to hospital, possibly admitted)
3 Other injury (typically requires medical treatment (bruising, contusions, unconscious, pain etc. OR complained of pain soreness, etc.)
4 Non injury

Conversion rules for 1989 onwards data.
These rules take advantage of the field 'admitted to hospital' that only occurs after the 1988 form.
Refer to the Police 510 form Part1 and the Police coding instruction sheet.

<table>
<thead>
<tr>
<th>Police</th>
<th>Police severity</th>
<th>Inj_level</th>
<th>Injury</th>
<th>Admitted to (derived)</th>
<th>(derived)</th>
<th>Code</th>
<th>Hospital code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>any</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>any</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Y</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>any</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

**COMMON NAME**: Licence – State, International etc  
**TYPE**: Character  
**DATABASE NAME**: licence_state  
**SIZE**: 1  
**SOURCE**: VicRoads Licence Database  
**COMMENTS**: The state etc that the licence was issued. Compare reg_state field (vehicles’ state of registration)  
**VALUES**:  
A – ACT  
B – Commonwealth  
D – Northern Territory  
N – New South Wales  
O – Overseas  
Q – Queensland  
S – South Australia  
T – Tasmania  
V – Victoria  
W – West Australia  
Z – Not known  
(BLANK) – not available

**COMMON NAME**: Light conditions  
**TYPE**: Numeric  
**DATABASE NAME**: light_condition
SOURCE: ADDS - 510 Accident report form

COMMENTS: Light conditions as recorded by the reporting police officer. Must match the time of accident (for the month of the year).

VALUES: Code Description
1  Day
2  Dusk/dawn
3  Dark street lights on
4  Dark street lights off
5  Dark no street lights
6  Dark street lights unknown
   9 Unknown

COMMON NAME: Local Government Area Name
TYPE: Character
DATABASE NAME: lga_name
SIZE: 25
SOURCE: VicRoads Road Network Database.

COMMENTS: Take care with sites on the borders of LGAs. These generally have 2 (or more) LGA names describing them. The borders are shown on the computerised road map used in CrashStats. These generally agree very closely with the Melways borders etc.

COMMON NAME: Map reference
TYPE: Character
SIZE: Respectively 3, 6, 4, 2, 2
SOURCE: VicRoads Land Information and Survey.

Page – map page number of the corresponding Melways or VicRoads State Directory.
Take care with outer Melbourne and Geelong locations as new editions of the Melways often renumber their maps or change the coverages of existing maps or add entirely new maps.

REFER to SORT ORDER help notes.
VALUES: Directory
   Code  Description
<table>
<thead>
<tr>
<th>Value Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A-2T Melways inner city enlargements</td>
<td></td>
</tr>
<tr>
<td>3-999 Normal maps (either Melways or VRSD)</td>
<td></td>
</tr>
<tr>
<td>216A, 209A, 144A, 175A, 243A etc</td>
<td>Melways maps with alphabetic character (usually enlargements)</td>
</tr>
</tbody>
</table>

**Horizontal Grid**

<table>
<thead>
<tr>
<th>Value Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to Z Alphabetic capitals</td>
<td></td>
</tr>
</tbody>
</table>

**Vertical Grid**

<table>
<thead>
<tr>
<th>Value Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1… Numeric</td>
<td></td>
</tr>
</tbody>
</table>

**COMMON NAME:** Node Identifier  
**TYPE:** Numeric, integer  
**DATABASE NAME:** node_id  
**SOURCE:** VicRoads  
**COMMENTS:** Unique integer identifier for the exact accident location on VicRoads digital map of Victoria (the RNDB).

Value of 0 means that site cannot be located with reference to the map (i.e. that usually the Police description was too vague to enable exact locating).

**NOTE – SEE ‘SITE IDENTIFIER’ FIELD ALSO**

**COMMON NAME:** Node Type  
**TYPE:** Character  
**DATABASE NAME:** node_type  
**SIZE:** 1  
**SOURCE:** VicRoads  
**COMMENTS:** The current spatial (“on map”) location type.
VALUE:  I – Intersection
       N – Non-intersection
       O – Off-road
       U – Unknown

COMMON NAME: Number of people involved.
TYPE: Numeric
DATABASE NAME: no_persons
SIZE: 4
SOURCE: Derived from the 510 accident report form.
VALUES: Range 1 to 9999

COMMON NAME: Number of people with a given injury level
TYPE: Numeric
DATABASE NAME: No_persons_killed, No_persons_inj, No_persons_inj_2,
               No_persons_inj_3, no_persons_not_inj
SIZE: 4
SOURCE: Derived from the 510 accident report form using the rules outlined
        in the field (Injury to person).
COMMENTS: These values were created in 1990 as a result of the change in
          the wording on the Police accident report form.
          See ‘Injury to person’ field for more details.
VALUES: Range 0 to 9999

COMMON NAME: Number of vehicles
TYPE: Numeric
DATABASE NAME: no_of_vehicles
SIZE: 4
SOURCE: 510 Accident report form - derived from accident record.
COMMENTS: Includes bicycles but not objects, property, toys (skate boards),
          etc.

COMMON NAME: Object hit
TYPE: Numeric
DATABASE NAME: object_type
SIZE:
SOURCE: VicRoads Data Entry System (ACCENT) - completed by VicRoads
        staff from the object hit code and the diagram and
narrative on the 510 accident report form.

**COMMENTS:** Type of object hit in this event.
Correlates with Sub DCA types.

**VALUES:** Code Description

- **Code Description**
  - 01 Pole (telephone/electricity)
  - 02 Tree (shrub/scrub)
  - 03 Fence/wall (including gates)
  - 04 Embankment
  - 05 Guide post (including km post)
  - 06 Traffic sign (no parking/no standing)
  - 07 Guard rail
  - 08 Fire hydrant
  - 09 Building
  - 10 Other fixed (railway, furniture, culvert, telephone box, etc)
  - 11 Not known
  - 12 Traffic signal (traffic lights)
  - 13 Bridge (off path - see 21)
  - 14 Barrier (road closure)
  - 17 Traffic island
  - 21 Bridge (on path - see 13)
  - 23 Roadworks (dirt, sign, barrier, excavation)
  - 24 Safety zone (e.g. tram safety zone)
  - 30 Kerb (if it is protruding)
  - 31 Tame animal (cats and dogs etc.)
  - 32 Cattle (includes steers, bulls, cows)
  - 33 Sheep
  - 34 Horse (not ridden)
  - 35 Other tame animals
  - 36 Kangaroo (includes wallabies)
  - 37 Wombat
  - 38 Wild animal (includes birds)
  - 39 Unknown animal

**COMMON NAME:** Pedestrian movement

**TYPE:** Character

**DATABASE NAME:** pedest_movement

**SIZE:** 1

**SOURCE:** ADDS - Police data entry system

**COMMENTS:** Pedestrian movement as recorded on the 510 accident report form.

**VALUES:** Code Description

- 0 Not applicable
- 1 Crossing carriageway
- 2 Working, playing, lying or standing on carriageway
3 Walking on carriageway with traffic
4 Walking on carriageway against traffic
5 Pushing or working on vehicle
6 Walking to, from or boarding tram
7 Walking to, from or boarding other vehicle
8 Not on carriageway (e.g. footpath)
9 Not known

COMMON NAME: Police attendance
TYPE: Numeric
DATABASE NAME: police_attend
SIZE:
SOURCE: ADDS - 510 Accident report form
COMMENTS: Whether or not the police attended the scene of the accident.
VALUES: Code Description
   1 Yes
   2 No
   9 Not known

COMMON NAME: Police district
TYPE: Character
DATABASE NAME: First character in accident number field.
SIZE:
SOURCE: VicPol (Victoria Police)
COMMENTS: The police district that the accident occurred in.
VALUES: Current districts 1 to 5. Old police districts (for older accidents A – Q).

COMMON NAME: Police Location Description
TYPE: Character
DATABASE NAME:
SOURCE: Police form / data entry system
COMMENTS: Exact copy of the raw / original police entry for the map reference and street location before any ‘recoding’ by VicRoads.
COMMON NAME: Region (VicRoads Administrative Region)
TYPE: Character
DATABASE NAME: region_name
SIZE: 35
SOURCE: VicRoads
COMMENTS:
VALUES: Code Description
1 Eastern
2 Metropolitan North West
3 Metropolitan South East
4 North East
5 Northern
6 South Western
7 Western

COMMON NAME: Road geometry
TYPE: Numeric
DATABASE NAME: road_geometry
SIZE:
SOURCE: ADDS - 510 Accident report form
COMMENTS: Road geometry as recorded by the reporting police officer.
VALUES: Code Description
1 Cross intersection
2 'T' Intersection
3 'Y' Intersection
4 Multiple intersections
5 Not at intersection
6 Dead end
7 Road closure
8 Private property
9 Unknown

COMMON NAME: Road names
TYPE: Character except for complex_int_no, supernode_no, distance_location
DATABASE NAMES: road_name_1 to 3, road_type_1 to 3, road_desc_1 to 3, complex_int_no, supernode_no, distance_location, direction_location
SIZE: name 45, type 15, desc 20
TABLE: accident_node
SOURCE: ADDS - Police data entry system with VicRoads verification.
COMMENTS: Accidents at Intersections
Simple intersections use road_name_1, road_type_1, road_desc_1 and road_name_2, road_type_2, road_desc_1.
Complex intersections (where 2 intersections are typically within 20 metres of each other – measured centre to centre) also use complex_int_no as an additional description.
Freeway interchange intersections (such as ramp with through freeway carriageway or overpass road) also have an interchange descriptor. This uses a look up table of descriptors using the supernode_no field.

Accidents at mid-block
Simple mid-blocks use as the through road descriptor road_name_1, road_type_1, road_desc_1. The intersections at either end of a mid-block use as descriptors respectively road_name_2 etc and road_name_3 etc.
Freeway mid-block sites additionally often describe which carriageway the accident was on (using road_desc_1) and the ‘intersections’ at either end of the mid-block have interchange descriptors if appropriate (see above ‘Freeway interchange intersections supernode_no’).

Exact locations in metres from a reference site are also added to the road names description using the distance_location and direction_location fields. These are respectively the distance in metres from the reference point and direction (e.g. E, N, W etc). The reference point is usually the intersection described by road_name_2 but can also be a landmark or an on-road kilometrage post etc.

NOTE:
THESE FIELDS FROM THE ACCIDENT_NODE DATABASE TABLE ARE THE MASTER SITE LOCATION FIELDS. DO NOT USE THE LOCATION FIELDS IN THE “ACCIDENT” DATABASE TABLE.

COMMON NAME: Road Number (Route number)
TYPE: Integer
DATABASE NAME: road_route_1 in table ACCIDENT_NODE
route_no in accident_chainage
SIZE:
SOURCE: VicRoads official Road Number as used in its locational database (the Road Network Database - RNDB). Refer also VicRoads "State Directory" Editions (though very occasionally numbers vary between editions or new routes are added).
COMMENTS: This is the primary road/route number for road_name_1.
NOTE though for intersections multiple values are possible and the extra
values are found using the route_no field in the
ACCIDENT_CHAINAGE table eg the intersection of
Springvale road (number 2400) and Dandenong Road
(number 2510).

VALUES: Group Classifications are:
2000-2999 Freeways or Highways
3000-3999 Forest Rds
4000-4999 Tourist Rds
5000-5999 Main Rds
7000-7999 Ramps (mainly Freeway ramps)
>=100,000 Unclassified Roads e.g. Council / 'Local’
roads

COMMON NAME: Road surface conditions
TYPE: Character
DATABASE NAME: surface_cond
SIZE: 1
SOURCE: ADDS - 510 Accident report form
COMMENTS: Road surface conditions as recorded by the reporting officer.
VALUES: Code Description
1 Dry
2 Wet
3 Muddy
4 Snowy
5 Icy
9 Unknown

COMMON NAME: Road surface type
TYPE: Character
DATABASE NAME: road_surface_type
SIZE:
SOURCE: Police accident report form - ADDS
COMMENTS: Prior to 1990 only one road surface was stored. This value is
stored with the first vehicle.
Road surface for 1990 is available for each vehicle in the collision.
VALUES: Code Description
1 Paved
2 Unpaved
3 Gravel
9 Not known

COMMON NAME: Road user type
TYPE: Character
DATABASE NAME: road_user_type
SIZE: 2
SOURCE: VicRoads Data Entry - automatically assigned by system.
       Reference is made to type of vehicle and seating position.
COMMENTS: Road user type.

VALUES:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Vehicle Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pedestrian</td>
<td>1-9, 17</td>
</tr>
<tr>
<td>2</td>
<td>Driver (of cars, trucks etc.)</td>
<td>1-9, 13, 17</td>
</tr>
<tr>
<td>3</td>
<td>Passenger (car, truck, bicycle etc.)</td>
<td>1-9, 13, 17</td>
</tr>
<tr>
<td>4</td>
<td>Motor cyclist</td>
<td>10-12</td>
</tr>
<tr>
<td>5</td>
<td>Pillion passenger</td>
<td>10-12</td>
</tr>
<tr>
<td>6</td>
<td>Bicyclist</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>Other driver (horse, tram, train)</td>
<td>14-16</td>
</tr>
<tr>
<td>8</td>
<td>Other pass</td>
<td>14-16</td>
</tr>
<tr>
<td>9</td>
<td>Not known</td>
<td>99</td>
</tr>
</tbody>
</table>

COMMON NAME: Seat belt / restraint wearing
TYPE: Character
DATABASE NAME: helmet_belt_worn
SIZE:
SOURCE: ADDS - Police data entry system.
COMMENTS: Seat belt, helmet or child restraint wearing.

VALUES: Code Description
1 Seatbelt worn
2 Seatbelt not worn
3 Child restraint worn
4 Child restraint not worn
5 Seatbelt/restraint not fitted
6 Crash helmet worn
7 Crash helmet not worn
8 Not appropriate
COMMON NAME: Seating position
TYPE: Character
DATABASE NAME: seating_position
SIZE: 2 Characters
SOURCE: ADDS - Police data entry system.
COMMENTS: Obtained from the 510 accident report form.
VALUES: Code Description
- CF Centre-front
- CR Centre-rear
- D Driver or rider
- LF Left-front
- LR Left-rear
- NA Not applicable
- NK Not known
- OR Other-rear
- PL Pillion passenger
- PS Motor-cycle side car passenger
- RR Right-rear

COMMON NAME: Severity
TYPE: Character
DATABASE NAME: severity
SIZE:
SOURCE: Derived from values in inj_level for each person involved in the accident. See the 'Injury to Person' field.
COMMENTS: The value recorded on the 510 accident report form may be modified by VicRoads staff so that it is consistent with individual injury codes. See the 'Injury to Person' field.
VALUES: Code Description
- 1 Fatal accident
- 2 Serious injury accident
- 3 Other injury accident
- 4 Non injury accident

COMMON NAME: Sex
TYPE: Character
DATABASE NAME: sex
**VALUES:** Sex of person as recorded on the 510 accident report form.

**VALUES:** Code Description
- F Female
- M Male
- U Not known

**COMMON NAME:** Site Identifier (Intersection and Mid block)
**TYPE:** Numeric
**DATABASE NAME:** site_type, site_id (in cs_accident_info)
**SIZE:** 1
**SOURCE:** CrashStats database import process.

**COMMENTS:** Node types in CrashStats are distinguished by a site_type value in cs_accident_info. This value is calculated during the database import procedure from data in existing RNDB tables. The site_id value, also obtained during the import procedure, depends on the site_id value as seen in the table below.

**VALUES:**

<table>
<thead>
<tr>
<th>site_type</th>
<th>Description</th>
<th>site_id value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Complex Intersection</td>
<td>complex_int_no</td>
</tr>
<tr>
<td>2</td>
<td>Simple Intersection</td>
<td>node_id</td>
</tr>
<tr>
<td>3</td>
<td>Road segment</td>
<td>segment_id (from road_segment)</td>
</tr>
<tr>
<td>4</td>
<td>Road segment with no chainage value</td>
<td>node_id</td>
</tr>
<tr>
<td>5</td>
<td>Nodeless accidents (accidents with no accident_node)</td>
<td>0</td>
</tr>
</tbody>
</table>

**COMMON NAME:** Sort Key
**TYPE:** Character
**DATABASE NAME:** sortkey
**SIZE:** 70 Characters
**SOURCE:** Swinburne University - programmatically derived.

**COMMENTS:** The sortkey is used to group accidents together by their directory (Melways or VicRoads State Directory) location.
It is used in 'sort by location' in listing reports.

VALUES: The sortkey is derived from a number of database fields that are concatenated together.
- Directory: Specifies the directory (Melways or VicRoads State Directory)
- Page: The page number of the directory.
- Grid_reference_x: The x grid reference on the page specified above.
- Grid_reference_y: The y grid reference on the page specified above.
- Actual_route_no: The route number of the accident.
- Actual_chainage: The chainage value of the accident.
- Node_Id: The node id of the accident.

COMMON NAME: Speed zone (limit)
TYPE: Character
DATABASE NAME: speed_zone
SIZE: 3
SOURCE: ADDS - 510 Accident report form
COMMENTS: Speed zone as recorded by the reporting police officer.

VALUES: Code Description
- 040 40 km/hr
- 050 50 km/hr
- 060 60 km/hr
- 075 75 km/hr
- 080 80 km/hr
- 090 90 km/hr
- 100 100 km/hr
- 110 110 km/hr
- 777 Other speed limit
- 888 Camping grounds, off road
- 999 Not known

COMMON NAME: Sub DCA codes
TYPE: Character
DATABASE NAME: sub_dca_code
**SIZE:** 3  
**SOURCE:** VicRoads Data Entry System - added by VicRoads staff from information obtained from the diagram and narrative.  
**COMMENTS:** Supplementary information for the DCA (accident classification) used for a particular accident.

**VALUES:**

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>Vehicle entering intersection</td>
</tr>
<tr>
<td>A02</td>
<td>Vehicle leaving intersection</td>
</tr>
<tr>
<td>A03</td>
<td>Vehicle within intersection</td>
</tr>
<tr>
<td>A04</td>
<td>Vehicle in left turn slip lane</td>
</tr>
<tr>
<td>B01</td>
<td>Vehicle going straight through</td>
</tr>
<tr>
<td>B02</td>
<td>Vehicle turning right</td>
</tr>
<tr>
<td>B03</td>
<td>Vehicle turning left</td>
</tr>
<tr>
<td>B04</td>
<td>Vehicle reversing</td>
</tr>
<tr>
<td>C01</td>
<td>Pedestrian stepped off media strip</td>
</tr>
<tr>
<td>C02</td>
<td>Pedestrian stepped off safety zone, tram shelter</td>
</tr>
<tr>
<td>D01</td>
<td>Pedestrian emerged from behind car</td>
</tr>
<tr>
<td>D02</td>
<td>Pedestrian emerged from behind truck</td>
</tr>
<tr>
<td>D03</td>
<td>Pedestrian emerged from behind bus</td>
</tr>
<tr>
<td>D04</td>
<td>Pedestrian emerged from behind tram</td>
</tr>
<tr>
<td>D05</td>
<td>Pedestrian emerged from behind motorcycle</td>
</tr>
<tr>
<td>D06</td>
<td>Pedestrian emerged from behind other vehicles</td>
</tr>
<tr>
<td>D07</td>
<td>Pedestrian emerged from behind vehicle not known</td>
</tr>
<tr>
<td>E01</td>
<td>Pedestrian playing</td>
</tr>
<tr>
<td>E02</td>
<td>Pedestrian walking</td>
</tr>
<tr>
<td>E03</td>
<td>Pedestrian lying</td>
</tr>
<tr>
<td>E04</td>
<td>Pedestrian standing</td>
</tr>
<tr>
<td>E05</td>
<td>Pedestrian working/pushing or working on vehicle</td>
</tr>
<tr>
<td>E06</td>
<td>Pedestrian activity not known</td>
</tr>
<tr>
<td>F01</td>
<td>No paved footpath</td>
</tr>
<tr>
<td>F02</td>
<td>Paved footpath</td>
</tr>
<tr>
<td>F03</td>
<td>Footpath unknown</td>
</tr>
<tr>
<td>F04</td>
<td>Not on footpath</td>
</tr>
<tr>
<td>G01</td>
<td>Vehicle moving forward under control</td>
</tr>
<tr>
<td>G02</td>
<td>Vehicle moving forward out of control</td>
</tr>
<tr>
<td>G03</td>
<td>Vehicle moving back under control</td>
</tr>
<tr>
<td>G04</td>
<td>Vehicle moving back out of control</td>
</tr>
<tr>
<td>H02</td>
<td>Vehicle reverse entering</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>H03</td>
<td>Vehicle forward departing</td>
</tr>
<tr>
<td>H04</td>
<td>Vehicle reverse departing</td>
</tr>
<tr>
<td>I01</td>
<td>Private driveway/laneway</td>
</tr>
<tr>
<td>I02</td>
<td>Hotel, motel, hostel driveway/laneway</td>
</tr>
<tr>
<td>I03</td>
<td>Factory (including loading bays) driveway/laneway</td>
</tr>
<tr>
<td>I04</td>
<td>Commercial (includes shops, school, station) driveway</td>
</tr>
<tr>
<td>I05</td>
<td>Driveway/laneway not known</td>
</tr>
<tr>
<td>I06</td>
<td>Laneway</td>
</tr>
<tr>
<td>J01</td>
<td>Boarding</td>
</tr>
<tr>
<td>J02</td>
<td>Alighting</td>
</tr>
<tr>
<td>K01</td>
<td>Median</td>
</tr>
<tr>
<td>K02</td>
<td>Other separator</td>
</tr>
<tr>
<td>L01</td>
<td>Road straight at intersection</td>
</tr>
<tr>
<td>L02</td>
<td>Road curved at intersection</td>
</tr>
<tr>
<td>L03</td>
<td>Road straight at midblock</td>
</tr>
<tr>
<td>L04</td>
<td>Road curved at midblock</td>
</tr>
<tr>
<td>M01</td>
<td>Vehicle turning through median opening</td>
</tr>
<tr>
<td>N01</td>
<td>Intersection</td>
</tr>
<tr>
<td>N02</td>
<td>Midblock</td>
</tr>
<tr>
<td>O01</td>
<td>Parked vehicle causes vehicle to change lanes</td>
</tr>
<tr>
<td>P01</td>
<td>Hit by vehicle from same dir as initial dir of U turning device</td>
</tr>
<tr>
<td>P02</td>
<td>Hit by vehicle from dir opposite to initial dir of U turning vehicle</td>
</tr>
<tr>
<td>Q01</td>
<td>Hit Poles (telephone/electricity)</td>
</tr>
<tr>
<td>Q10</td>
<td>Hit other objects (Telephone/Culvert/RX) Fixed/Not Fixed</td>
</tr>
<tr>
<td>Q11</td>
<td>Object hit not known</td>
</tr>
<tr>
<td>Q12</td>
<td>Hit Traffic signals (i.e. Traffic Lights)</td>
</tr>
<tr>
<td>Q13</td>
<td>Hit Bridge (When it is NOT on path)</td>
</tr>
<tr>
<td>Q14</td>
<td>Hit Barriers (Road Closure)</td>
</tr>
<tr>
<td>Q17</td>
<td>Hit Traffic island</td>
</tr>
<tr>
<td>Q21</td>
<td>Hit Bridge (When it is ON path)</td>
</tr>
<tr>
<td>Q23</td>
<td>Hit Roadworks (Dirt sign, barrier, excavation)</td>
</tr>
<tr>
<td>Q24</td>
<td>Hit Safety Zone (i.e. Tram safety zone)</td>
</tr>
<tr>
<td>Q03</td>
<td>Hit Fences (including gates)</td>
</tr>
<tr>
<td>Q30</td>
<td>Hit Protruding kerb</td>
</tr>
<tr>
<td>Q31</td>
<td>Hit Animals Domestic (Cats and Dogs)</td>
</tr>
<tr>
<td>Q32</td>
<td>Hit Animals Cattle</td>
</tr>
<tr>
<td>Question</td>
<td>Code</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>Q33</td>
<td>Hit Animals</td>
</tr>
<tr>
<td>Q34</td>
<td>Hit Animals</td>
</tr>
<tr>
<td>Q35</td>
<td>Hit Animals</td>
</tr>
<tr>
<td>Q36</td>
<td>Hit Animals</td>
</tr>
<tr>
<td>Q37</td>
<td>Hit Animals</td>
</tr>
<tr>
<td>Q38</td>
<td>Hit Animals</td>
</tr>
<tr>
<td>Q39</td>
<td>Hit Unknown animals</td>
</tr>
<tr>
<td>Q40</td>
<td>Hit Embankments</td>
</tr>
<tr>
<td>Q41</td>
<td>Hit Guide posts (including km/posts)</td>
</tr>
<tr>
<td>Q42</td>
<td>Hit Traffic signs (No parking, No standing etc)</td>
</tr>
<tr>
<td>Q43</td>
<td>Hit Guard rail</td>
</tr>
<tr>
<td>Q44</td>
<td>Hit Fire hydrant</td>
</tr>
<tr>
<td>Q45</td>
<td>Hit Buildings</td>
</tr>
<tr>
<td>R01</td>
<td>Kerb parking</td>
</tr>
<tr>
<td>R02</td>
<td>Kerb parking</td>
</tr>
<tr>
<td>R03</td>
<td>Centre of road parking</td>
</tr>
<tr>
<td>R04</td>
<td>Centre of road parking</td>
</tr>
<tr>
<td>R05</td>
<td>Parking off-road/footpath</td>
</tr>
<tr>
<td>S02</td>
<td>Collision on second half of carriageway</td>
</tr>
<tr>
<td>S03</td>
<td>On footpath</td>
</tr>
<tr>
<td>U01</td>
<td>Opposing direction vehicle present</td>
</tr>
<tr>
<td>V01</td>
<td>No vehicle mounted/struck</td>
</tr>
<tr>
<td>V02</td>
<td>Kerb (roadside)</td>
</tr>
<tr>
<td>V03</td>
<td>Traffic island mounted/struck</td>
</tr>
<tr>
<td>V04</td>
<td>Safety zone mounted/struck</td>
</tr>
<tr>
<td>V05</td>
<td>Mounted/struck median</td>
</tr>
<tr>
<td>V06</td>
<td>Separation mounted/struck</td>
</tr>
<tr>
<td>V07</td>
<td>Roundabout mounted/struck</td>
</tr>
<tr>
<td>W01</td>
<td>Leaves carriageway to left</td>
</tr>
<tr>
<td>W02</td>
<td>Leaves carriageway to right</td>
</tr>
<tr>
<td>X01</td>
<td>Fell in vehicle</td>
</tr>
<tr>
<td>X02</td>
<td>Fell from vehicle</td>
</tr>
<tr>
<td>Y01</td>
<td>Any vehicle (include trailer, parked car)</td>
</tr>
<tr>
<td>Z01</td>
<td>On freeway (between interchanges)</td>
</tr>
<tr>
<td>Z02</td>
<td>At entrance ramp/local road intersection</td>
</tr>
<tr>
<td>Z03</td>
<td>On entrance ramp</td>
</tr>
<tr>
<td>Z04</td>
<td>At entrance ramp/freeway</td>
</tr>
<tr>
<td>Z05</td>
<td>On exit ramp</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Z07</td>
<td>At exit ramp/local road intersection</td>
</tr>
<tr>
<td>Z08</td>
<td>Freeway/freeway interchange</td>
</tr>
<tr>
<td>Z09</td>
<td>At local Rd I/S or M/B with RRP/RS spanning part of freeway</td>
</tr>
<tr>
<td>S01</td>
<td>Collision on first half of carriageway</td>
</tr>
<tr>
<td>NRQ</td>
<td>Not Required</td>
</tr>
</tbody>
</table>

**COMMON NAME:** Time of accident  
**TYPE:** Time  
**DATABASE NAME:** accident_time  
**SIZE:**  
**SOURCE:** ADDS - 510 Accident report form  
**COMMENTS:** Original date stored in 24 hour format (ie 1pm = 1300 hours)  
Note the common practice used by the Police, when originally coding up the accident details, of 'rounding off the time' to the nearest 5 minutes or even nearest hour. This naturally occurs because in the vast majority of accidents police arrive at the scene well after the accident occurred and so the 'REAL' time of the accident is never precisely known.  
**VALUES:** Examples of various PC time formats:  
- 24 Hour format 2:35:00 PM = 14:35  
- or 12 Hour format 2:35:00 PM = 02:35PM  
- 9999 Unknown time midnight = 00:00

**COMMON NAME:** Traffic control  
**TYPE:** Character  
**DATABASE NAME:** traffic_control  
**SIZE:** 2  
**SOURCE:** Police accident report form - ADDS  
**COMMENTS:** Prior to 1990 only one traffic control was stored. This value is stored with the first vehicle.  
Traffic control for 1990 onwards is available for each vehicle in the collision.  
**VALUES:** Code Description  
- 00 No control  
- 01 Stop-go lights  
- 02 Flashing lights  
- 03 Out of order  
- 04 Ped. lights  
- 05 Ped. crossing  
- 06 RX gates/booms
07 RX bells/lights
08 RX no control
09 Roundabout
10 Stop sign
11 Giveaway sign
12 School - flags
13 School - no flags
14 Police
15 Other
99 Unknown

COMMON NAME: Type of vehicle
TYPE: Character
DATABASE NAME: vehicle_type
SIZE: 2
SOURCE: Police accident report form via ADDS system
COMMENTS: Vehicle type

NOTE: In CrashStats various common groups of the individual types below are used for analysis e.g. "cars/car derivatives" uses codes 1 to 5;
"trucks" uses codes 6 and 7; "motor bikes" use types 10, 11, 12.

VALUES: Code Description
01 Car
02 Station wagon
03 Taxi
04 Utility
05 Panel van
06 Semi-trailer
07 Truck (excluding semi)
08 Bus/coach
09 Mini bus (9-13) seats
10 Motor cycle
11 Moped
12 Motor scooter
13 Bicycle
14 Horse (ridden or drawn )
15 Tram
16 Train
17 Other vehicle
18 Not applicable
99 Not known

COMMON NAME: Urbanisation class
TYPE:
DATABASE NAME: 
SIZE: 
SOURCE: VicRoads, mainly uses 1996 census boundaries

VALUES: Code Description
1 Melbourne (Central Activity District (CAD))
2 Urban Melbourne excluding CAD e.g. suburbs
3 Other urban areas in Melbourne Statistical Division (MSD)
   eg outlying small towns like Nar Nar Goon
4 Large provincial cities
5 Small provincial cities
6 Other non-Melbourne (MSD) cities / towns
7 Small towns
8 Hamlets
9 Rural (‘open road’)

COMMON NAME: Vehicle’s Year of Manufacture
TYPE: Integer
DATABASE NAME: vehicle_year_manuf
SIZE: 
SOURCE: VicRoads
COMMENTS: The year that the vehicle was built / released. Some data is not available / missing from the records.
VALUES: four digit year, 0 is for unknown.

COMMON NAME: Vertical Grid reference

SEE MAP REFERENCE FIELD
6. APPENDIX E – SAMPLE POLICE COLLISION REPORT FORMS

6.1. Sample Police Collision Report Forms
COLLISION COVER SHEET

Officer in Charge

DATE:

COLLISION DATE:
LOCATION:

Collision Category  □ Fatal  □ Injury  □ Police Collision  □ Non Injury
Date reported to Police  /  /  Date Submitted  /  /

Reason if not submitted same day

NOTE: Collision Report (V.P. FORM 510) must be submitted prior to end of shift, if all details are not available, a supplementary report must follow.

Police Action Taken
1. □ Fatality—Inquest brief to be compiled at station level
   □ Hit Run (NFPA)—report attached
   □ Arrest—Brief to be compiled at station level  Bail date  /  /
   □ Penalty Notice Number  Issued
   ○ own authority
   ○ authority of
   □ Penalty Notice not issued because

Police Action Recommended
2. □ Preparation of ordinary brief— □ By TACO  □ Station Level
   □ Follow up/Further enquiries re

No Action Recommended
3. □ No Offence disclosed
   □ Insufficient evidence because

   □ Other

Correspondence
4. Statements attached from


(---------------------------)

Rank and Number

Officer in Charge TACO
DATE:

1. I recommend: □ No further action, matter finalised
   □ Preparation of Ordinary Brief  □ By TACO  □ Station Level
   □ Further enquiries or statements to be obtained from
### COLLISION REPORT

<table>
<thead>
<tr>
<th>STATION ACCIDENT No.</th>
<th>T.A.I.S. No.</th>
<th>D.C.A. CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL No.</th>
<th>VEHICLES INVOLVED</th>
<th>INJURED</th>
<th>24 HR. INJURY</th>
<th>NO INJURY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OCCURRED ON</th>
<th>Name of Street, Road or Property</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBURB</th>
<th>MUNICIPALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISTANCE</th>
<th>NEAREST</th>
<th>OR</th>
<th>NEAREST INTERSECTING STREET ROAD ON OTHER</th>
<th>POLICE EMERGENCY OCCURRED IN</th>
<th>POLICE EMERGENCY OCCURRED IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM</td>
<td>NEAREST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE OF COLLISION</th>
<th>INSERT CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HIT ROAD</th>
<th>USE ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT 1</th>
<th>OFFENDING DRIVER 1</th>
<th>Speed Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>leaking</th>
<th>Total Occupants Injured Inside</th>
<th>vehicle</th>
<th>family by code</th>
<th>pedestrian</th>
<th>object/property</th>
<th>driver by code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STREET OR TUNNEL</th>
<th>STREET OF TRAVEL</th>
<th>STREET LAMS</th>
<th>UNIT TOWED TO</th>
<th>TOW TRUCK REG. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT 2</th>
<th>Total Occupants Injured Inside</th>
<th>vehicle</th>
<th>family by code</th>
<th>pedestrian</th>
<th>object/property</th>
<th>driver by code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### PART 1

<table>
<thead>
<tr>
<th>INVESTIGATING OFFICER'S DETAILS</th>
<th>REPORT CHECKED &amp; FOUND CORRECT BY</th>
<th>PENALTY NOTICE No.</th>
<th>ENFORCE CODE</th>
<th>ESTATE</th>
<th>SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIGNATURE</th>
<th>First</th>
<th>Reg. No.</th>
<th>Signature</th>
<th>UNIT</th>
<th>NO</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LUNGED (black marker)</th>
<th>SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

*Note: The document contains a form with various fields for reporting a collision, including details about the vehicles involved, the scene, and the drivers' identities.*
TO BE USED FOR ALL ENTRIES WHERE • IS MARKED

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>POLES (TELEPHONE/ELECTRICAL)</td>
</tr>
<tr>
<td>02</td>
<td>TREE (DRUID AND 1/2)</td>
</tr>
<tr>
<td>03</td>
<td>FENCE AND WALLS (INCLUDE GATES)</td>
</tr>
<tr>
<td>04</td>
<td>EMBANKMENTS</td>
</tr>
<tr>
<td>05</td>
<td>GUARDRAIL</td>
</tr>
<tr>
<td>06</td>
<td>FIRE HYDRANTS</td>
</tr>
<tr>
<td>07</td>
<td>STREETLAMP</td>
</tr>
<tr>
<td>09</td>
<td>OTHER HIGHWAY FURNITURE, CULVERT, TELEPHONE BOX, ETC</td>
</tr>
</tbody>
</table>

11 | NOT KNOWN |

12 | TRAFFIC SIGNALS (IE: TRAFFIC LIGHTS) |

13 | BRIDGE (WHEN IT IS ON PATH—SEE 13) |

14 | ROAD CLOSURE BARRIERS |

17 | RAILWAY CROSSING |

18 | BRIDGE (WHEN IT IS NOT ON PATH) |

21 | BRIDGE (WHEN IT IS NOT ON PATH—SI E 13) |

23 | ROADWORKS (E.G. DIRT, EXCAVATION, SION, BARRIER) |

24 | SAFETY ZONE (IE: TRAM SAFETY ZONE) |

26 | PROTECTING KERB |

31 | ANIMALS—DOMESTIC (CATS AND DOGS) |

32 | ANIMALS—CATTLE |

33 | ANIMALS—SHEEP |

34 | ANIMALS—HORSE (NOT RIDDEN) |

35 | ANIMALS—OTHER GAME ANIMALS |

36 | ANIMALS—KANGAROO/WALLY |

37 | ANIMALS—WOMBAT |

38 | ANIMALS—OTHER WILD ANIMALS/BIRD |

39 | ANIMALS—UNKOWN |

INJURY |

1 | KILLED OR DEATH WITHIN 30 DAYS |

2 | MAJOR INJURIES—INJURIES REQUIRING HOSPITAL ADMISSION |

3 | SERIOUS INJURIES—REQUIRE MEDICAL TREATMENT (BRUSHING, CONTUSIONS, UNCONSCIOUS, PAIN, ETC) |

4 | MINOR INJURIES—COMPLAINT OF PAIN, SCARNESS, ETC |

5 | NL INJURIES—NO COMPLAINT OR PAIN, ETC |

SEAT/LEG/HELMET (S/L/H) |

1 | SEATBELT NOT WORN |

2 | SEATBELT WORN |

3 | CHILD RESTRAINT NOT WORN |

4 | CHILD RESTRAINT WORN |

5 | SEATBELT NOT FITTED |

6 | SEATBELT FITTED |

7 | CRASH HELMET WORN |

8 | CRASH HELMET NOT WORN |

9 | NOT APPLICABLE TO VEHICLE TYPE |

9 | NOT KNOWN |

DEFINITIONS FOR CLASSIFYING ACCIDENTS

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>EJECTION</td>
</tr>
<tr>
<td>02</td>
<td>EJECTION</td>
</tr>
<tr>
<td>03</td>
<td>EJECTION</td>
</tr>
<tr>
<td>04</td>
<td>EJECTION</td>
</tr>
<tr>
<td>05</td>
<td>EJECTION</td>
</tr>
<tr>
<td>06</td>
<td>EJECTION</td>
</tr>
<tr>
<td>07</td>
<td>EJECTION</td>
</tr>
<tr>
<td>08</td>
<td>EJECTION</td>
</tr>
<tr>
<td>09</td>
<td>EJECTION</td>
</tr>
<tr>
<td>10</td>
<td>EJECTION</td>
</tr>
<tr>
<td>11</td>
<td>EJECTION</td>
</tr>
<tr>
<td>12</td>
<td>EJECTION</td>
</tr>
<tr>
<td>13</td>
<td>EJECTION</td>
</tr>
<tr>
<td>14</td>
<td>EJECTION</td>
</tr>
<tr>
<td>15</td>
<td>EJECTION</td>
</tr>
<tr>
<td>16</td>
<td>EJECTION</td>
</tr>
<tr>
<td>17</td>
<td>EJECTION</td>
</tr>
<tr>
<td>18</td>
<td>EJECTION</td>
</tr>
<tr>
<td>19</td>
<td>EJECTION</td>
</tr>
<tr>
<td>20</td>
<td>EJECTION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>02</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>03</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>04</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>05</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>06</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>07</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>08</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>09</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>10</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>11</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>12</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>13</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>14</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>15</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>16</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>17</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>18</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>19</td>
<td>VELOCITY</td>
</tr>
<tr>
<td>20</td>
<td>VELOCITY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>02</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>03</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>04</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>05</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>06</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>07</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>08</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>09</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>10</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>11</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>12</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>13</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>14</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>15</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>16</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>17</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>18</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>19</td>
<td>VEHICLE BODY TYPE</td>
</tr>
<tr>
<td>20</td>
<td>VEHICLE BODY TYPE</td>
</tr>
</tbody>
</table>

See Appendix C For Details
NOTE: From November 2005, the Police stopped using 510 Forms (as per the sample below) to document details of crash incidents. The Police now record crash details in their pocketbooks and then enter this data into their Traffic Incident System (TIS). VicRoads receives the data from TIS in electronic form only and paper forms are no longer provided. Crash incident records, as well as collision diagrams, are now supplied in XML format.